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Computer simulation of polyethylene crystals 
Part 1 Method, structure and elastic constants for perfect crystals 

D. J. BACON, N. A. G E A R Y *  
Department of Metallurgy and Materials Science, The University of Liverpool, 
P.O. Box 147, Liverpool, UK 

A suite of computer programs has been developed for the simulation of defects in poly- 
ethylene crystals. The programs assume model crystals in which intramolecular distor- 
tions are excluded and the molecular chains are straight and infinite in length. Inter- 
molecular interactions are described by non-bonded interatomic potentials, and, for 
defect modelling, it is considered desirable to extend their ranges from the values used 
previously. In the present paper (Part 1 ), the simulation method is outlined and the 
potentials employed are described. The lattice parameters given by the potentials are 
presented and discussed, and the elastic contstants for these rigid-chain crystals are cam- 
computed. The constants for the orthorhombic phase are significantly different from 
those calculated previously, and it is argued that this is due to the restriction of the range 
of atom-atom interactions in earlier studies. Elastic constants for the monoclinic phase 
are given here for the first time. The developments described provide for the simulation 
of defects in model polymer crystals reported in Parts 2 and 3. 

1. I n t r o d u c t i o n  
The still-increasing use of  crystalline polymers in 
engineering applications has set in train extensive 
research into their mechanical properties. Exper- 
iments on bulk crystalline and semicrystalline 
specimens and on single crystals have revealed that 
polymer crystals deform plastically in similar ways 
to other crystalline solids: that is, they can 
undergo slip, deformation twinning and stress- 
induced martensitic transformations, the modes 
which are operative being dependent on the test 
conditions. There are, however, important differ- 
ences between the factors which control these 
mechanisms in polymers and, say, metals. They 
arise from the marked anisotropy engendered by 
the presence of molecular chains and the (rela- 
tively) complicated arrangement of atoms within 
the unit cell. ' Furthermore, the direct observation 
of defects responsible for deformation is not so 
straightforward in polymers and many of their 
properties have been inferred from indirect evi- 
dence. Thus, altliough there is a substantial body 

of knowledge about the deformation mechanisms 
in crystalline polymers [1-3],  some aspects are 
only little understood and there is a scarcity of  
information about the atomic structure of  impor- 
tant defects such as stacking faults, dislocations 
and twin boundaries, etc. Even at the simpler 
level o f  elastic loading, knowledge of the crystal 
response is incomplete, for most of  the elastic 
constants related to intermolecular deformation 
require theoretical evaluation [4]. Calculations 
have been made for polyethylene, for instance, but 
the dependence of the constants on the form of 
the interatomic potentials has not been examined. 
Moreover, no estimates appear to have been made 
for the monoclinic phase. 

It is clear, therefore, that scope exists for an 
investigation of the structure of polymer crystals 
at the atomic level, in the hope that the infor- 
mation gained can shed light on the mechanical 
behaviour of  such systems. One way of under- 
taking an investigation of this sort is by simulating 
crystals via compute r  models. Although this 
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approach has the limitations which usually attend 
theoretical work - such as dependence on simpli- 
fying assumptions and validitY of input data - 
it often has the distinct advantage of being the 
only means by which atomic configuration and 
energy can be studied. 

The resuks of such a study are reported here. 
The crystals simulated have been restricted to 
polyethylene, partly because of their simplicity 
of  structure and partly because of the wealth of  
published work on this polymer. In the present 
paper (Part 1), the method and assumptions used 
are described. The interatomic potentials employed 
in the simulations are discussed, and although they 
are the same as those used by earlier workers, it 
will be seen that their range has to be extended 
here to beyond that used hitherto. Accordingly, 
the crystal parameters predicted are not quite the 
same as those given previously. The elastic con- 
stants derivable from the intennolecular potentials 
have been computed for the stable orthorhombic 
and monoclinc phases of polyethylene. The depen- 
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Figure 1 ( a )  T h e  a t o m i c  s t r u c t u r e  o f  t h e  p o l y e t h y l e n e  

molecular chain. Carbon and hydrogen atoms are denoted 
by open and filled circles, respectively. The (0 0 I) pro- 
jections of the unit cells of the orthorhombic and mono- 
clinic phases are shown in (b) and (c), respectively. 
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dence o f  the constants on the parameters and 
range of the potentials has been investigated, and, 
as implied from the preceding discussion, the 
monoclinic constants are given here for the first 
time. 

The stable molecular configurations at the 
boundaries of  stacking faults and twins have been 
investigated, again for both the orthorhombic 
and monoclinc phases. The results and discussion 
of the energy of these interfaces are presented in 
a subsequent paper (Part 2). Finally, the mol- 
ecular structures of  the dislocations believed to be 
responsible for slip have been simulated. Changes 
in the structure under the application of external 
stress have also been modelled, and the results 
of this study are reported in Part 3. 

2. Methods 
2.1. Crystal structure 
The arrangement of  carbon (C) and hydrogen (H) 
atoms in a polyethylene molecule are shown in 
Fig. la, and the arrangement of molecules within 
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the unit cells of  the orthorhombic and monoclinic 
phases of  polyethylene is depicted in Fig. lb 
and c, respectively: in the latter figures, the 
molecules are viewed along the [001]  crystal 
axis, which is the dashed chain-axis direction of 
Fig. l a. (The convention adopted here for the 
monoclinic phase is that the [001 ] or c direction 
is the diad axis; [10 O] is chosen to be the a direc- 
tion, see Fig. lc.) The covalent interactions 
between neighbouring atoms on the same chain 
are orders of  magnitude stronger than the inter- 
molecular interactions, which are mainly van der 
Waals in origin, and this leads to the first assump- 
tion employed to make the simulations tractable. 
The intramolecular bond lengths and angles - 
Rcc, RCH, 4~cc, qhrm in Fig. la  - and chain repeat 
distance c are taken as fixed in any one simulation, 
and rotation of bonds with respect to others on 
the same molecule is not permitted. In other 
words, the only distortions allowed are those 
which displace or rotate chains rigidly, and for 
many problems these are quite sufficient. 

A second simplification is, perhaps, more 
restrictive: it is assumed that the molecules are 
infinite in length. The crystals are therefore taken 
to be infinitely thick in the [001 ] direction, and 
the surfaces of molecular folds which bound 
single-crystal lamellae and crystallites in semi- 
crystalline material are ignored. This is undoub- 
tedly a limitation of the model used, for surface 
folds do influence the deformation modes at 
large strain [1-3].  It was considered necessary to 
adopt this approach for two reasons, however. 
First, the atomic structure in folds is comparatively 
complex and open to speculation [5], and to 
include it in the model would introduce an extra 
degree of uncertainty. It was thought better first 
to study the effects of  intermolecular interactions 
within a crystal. Second, a discrete lattice model 
which includes all the a tom-a tom interactions 
associated with folds would be cumbersome and, 
because of the heavy demand on computer pro- 
cessing and storage, would place a severe limit on 
maximum crystal size. 

The two assumptions employed lead to the 
following simplifications in the computer model. 
First, the lattice is periodic in [001]  and the 
computer-generated lattice points need only be 
two-dimensional, for the z coordinates of all 
atoms need not be stored explicitly. Second, only 
intermolecular interactions need be summed for 
lattice energy evaluation. Third, each molecule 

can be treated as six rows of regularly spaced 
atoms, thereby making the geometry of atomic 
positions and calculation of interatomic distances 
easier to handle. 

Despite this apparent simplicity, a crystal of  
N molecules has 4N degrees of  freedom, for the 
position and orientation of any molecular chain is 
given by four parameters ( x i , y i , z i ,  Oi), where 
1 ~<i~<N. Here, x i and yi are the rectangular 
Cartesian coordinates of the axis of the ith chain 
on a reference (001)  plane, z i is the displacement 
coordinate of that chain in the [001]  direction 
measured from the reference plane, and 0 i in the 
setting angle defining the orientation of the 
chain. The reference plane is chosen to intersect 
a C-C bond, and a chain orientation vector Pi 
is defined by the projection of the line from the 
C atom immediately below the plane to the one 
immediately above (Fig. l a). If  the chain sub- 
sequently undergoes a displacement z i in the 
[001 ] chain-axis direction, the vector Pi is taken 
to point from the C atom immediately below or 
on the plane to the one immediately above. The 
setting angle Oi is then measured anticlockwise 
from the positive x-direction to Pi, the x-axis 
usually being a low index direction such as [100], 
[110], etc. The parameters zl and 0 i are periodic, 
z i with period c and 0i with period 2rr, and are 
interdependent because of the two-fold screw axis 
of  symmetry, i.e. ( x i , y i , z  i, Oi) = ( x i , y l ,  z i + nc /  
2,  Oi + nrr), where n is an integer. The conventions 
adopted for Pi and 0 i are required not only for 
computation but also, as will be seen, for represen- 
tation of the results. 

2.2. Simulation package 
The lattice generation, relaxation and other com- 
puter routines used in the simulations are develop- 
ments of the XL1TE library written by Martin 
(see [6]) for simulation of defects in crystals, 
which in turn was based on the DEVIL (Defect 
Evaluation in Lattices) programs of M. J. Norgett 
at the A.E.R.E., Harwell. The important feature 
of these simulation routine libraries is that by 
limiting the range of interaction and using position- 
relative indexing of atoms, they only require one 
list of relative neighbours for each sub-lattice: 
these neighbour lists are permanent during sub- 
sequent lattice summations, and so lattice energy 
evaluations are undertaken efficiently with respect 
both to processing and storage. The polymer 
version of DEVIL, described in details elsewhere 
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[7], is a command-driven, modelling system called 
DEVILS (DEVIL System) which allows many and 
varied modelling runs (simulations) using the same 
object program. Consequently, DEVILS may be 
run interactively, allowing the user to take tactical 
decisions during modelling or, alternatively, the 
system may be run in batch mode from a sequence 
of modelling commands. DEVILS uses the ICL 
George 3 System for editing Fortran source, gener- 
ating programs and communications. However, 
the programs themselves are written in ICL 
extended Fortran and are easily adaptable. 

Briefly, the programs generate a perfect crystal 
of  infinite, rigid chains, with up to ten chains per 
unit cell; the lattice parameters, Miller indices of 
the xz-plane, lattice basis vectors, etc., are speci- 
fied by the user. The crystal block generated need 
not be rectangular in section and its size is also 
specified by the user. This "inner region" of the 
crystal is surrounded by a boundary mantle whose 
molecules are not free to move during subsequent 
relaxation in the independent manner character- 
istic of the inner ones. The "outer region" is of  
sufficient thickness to ensure that every chain of  
the inner region has a complete shell of neighbours 
within the range of molecular interaction. The 
boundary conditions in the x and y directions may 
be specified to be either "fixed", in which case the 
outer chains do not move during the relaxation 
steps of the inner region, or "periodic", in which 
case the outer regions replicate the inner crystal 
and the outer chains move in the same way as their 
"parent" chains in the inner region during relax- 
ation. Periodic boundaries, therefore, mimic an 
infinite array of cells identical to the inner region, 
and are required, for instance, for the modelling 
of defects of  infinite extent, e.g. stacking faults 
and twins. In the present work, crystals of  up to 
1000 chains in the inner and fixed-outer regions 
were allowed. 

The DEVILS suite has routines to produce in 
the model crystal general distortions, e.g. homo- 
geneous strain and random chain displacements, 
and to introduce specific defects, e.g. dislocations, 
stacking faults and twins. The initial, perfect crys- 
tal is usually chosen to be in equilibrium under a 
chosen intermolecular potential, and so the chain 
movements associated with these routines, which 
are based on simple algorithms such as rigid-body 
shifts for stacking faults and elastic displacement 
fields for dislocations, generally leave the crystal 
in a non-equilibrium state. The required equi- 
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librium structure and energy of the defect crystal 
is therefore obtained by allowing the inner-region 
of (N) molecules to relax until the lattice energy 
is minimized with respect to the (4N) free co. 
ordinates. The minimization procedure of DEVILS 
is the method of conjugate gradients [8], but the 
choice exists for the user to freeze selected co- 
ordinates during minimization and also to relax 
one part of  the crystallite rigidly with respect to 
the other if required. These innovations are parti- 
cularly useful for the simulation of planar defects. 

2.3. Interatomic potential and 
lattice energy 

The efficiency of the minimization step depends 
to a large extent on the way in which the lattice 
energy and its (4N) gradients are calculated. 
Several methods are available, but all require infor- 
mation on the interaction energy of atoms on 
neighbouring chains. A number of semi-empirical 
potentials for the non-bonded interaction between 
hydrocarbon atoms have been discussed in the 
literature, the most widely used being in the form 
of a Buckingham potential with Born-Mayer 
repulsion and van der Waals attraction, namely: 

V(r) = A e x p ( - - C r ) - - B r  -6, (1) 

where r is the a tom-a tom spacing and A, B and 
C are constants for the atom species involved. A 
wide variety of possible values for A, B and C has 
been proposed but the sets most widely adopted 
are those of Williams [9], who derived eight sets 
for the Buckingham potential by weighted least- 
squares fitting to empirical crystal parameters of  
low-molecular-weight hydrocarbons and poly- 
ethylene. Despite the limitations of these poten- 
tials [10], they were fitted using a wide data base 
and have proved successful. They have been vali- 
dated by McCullough and Lindenmeyer [11] who 
used linear programming techniques to assess the 
range of acceptability for the constants and 
showed that other published sets fall outside the 
permitted range. 

The sets labelled I, IV and VII by Williams 
have been used in the present work: the corre- 
sponding values of  A, B and C for the three a t o m -  
atom interactions C-C, C - H  and H - H  are given 
in Table I. The variation of V(r) with r for the 
three potentials of set I is shown in Fig. 2;poten- 
tials for the other sets are similar in shape. In the 
derivation of Williams, the range of interaction was 
taken to be 6.0, 5.5 and 5.0 ,~ for C-C,  C - H  and 



T A B L E I The potential parameters used for polyethylene 

Property Potential set 

Coefficient Interaction I IV VII VII (Truncated) 

A C-C 86 910 
(kcal mo1-1) C-H 7 880 

H-H 2 920 

B C-C 586 
(kcal A 6 mol-') C-H 112 

H-H 33.5 

C C -C 3.6 
(A -1) C-H 3.67 

H-H 3.74 

Range C-C 11.0 
(A) C-H 8.5 

H-H 7.0 

83630 
8766 
2656 

586 
125 

27.3 

3.6 
3.67 
3.74 

11.0 
8.5 
7.0 

61 900 61 900 
11 000 11 000 
2 629 2 629 

505 505 
128 128 

32.3 32.3 

3.6 3.6 
3.67 3.67 
3.74 3.74 

11.0 6.0 
8.5 5.5 
7.0 5.0 

Structure constan ts 
Rt:x2 (A) 1.54 1.522 1.522 1.522 
RCI_ I (A) 1.09 1.04 1.04 1.04 
903 (deg) 112 113.1 113.1 113.1 
~HI-I (deg) 110 104 106 106 
c (A) 2.553 2.540 2.540 2.540 

H - H  atom pairs, respectively, on the grounds 
that interactions within these distances yield about 
80% of  the total  lattice energy. Inspection o f  
Fig. 2, however, reveals that  at these cut-off values 
V(r) is still a sizeable fraction o f  its value at the 
minimum. Abrupt  truncation of  the potentials in 
this way is generally unsatisfactory for defect 
modelling, for it can lead to difficulties with 
energy minimization and lattice instability. For  
defect simulation, it is usually considered desirable 
to use potentials for which V(r) and its first deri- 
vative go smoothly to zero, and so in the present 
work the Williams potentials were used with ranges 
of  11, 8.5 and 7 A for C -C ,  C - H  and H - H  pairs, 
respectively. These values were determined by  the 
distances at which the set I functions decrease to 
0.5% of  the C - C  well depth.  At these cut-off 
values, the potentials were truncated smoothly  by  
a cubic-spline tail o f  range 0.01 nm with coeffi- 
cients chosen for continuity o f  V and dV/dr  at 
the cut-off distance and to ensure V = dV/dr  = 0 

at the end o f  the range. For  comparative purposes, 
potentials with the original cut-off ranges o f  
Williams have been used in some calculations: they 
are designated "Truncated" in Table I. 

As explained in Section 2.1, the polyethylene 
molecule is treated in the present work as six 
atom rows - two of  carbon and four o f  hydrogen 
- and so the energy and gradients o f  a chain-pair 
interaction are calculated by a summation o f  36 

atomic r o w - r o w  interactions, as in the method o f  
Yemni and McCullough [12]. These r o w - r o w  
energies and their gradients are calculated and 
summed to give the total  chain-chain  potential  
energy and the x,  y ,  z components o f  the forces 
on each chain. The molecules are modelled as rigid 
bodies, and therefore the x a n d y  r o w - r o w  forces 
contribute to a net couple on every chain, which 
is treated as the negative o f  the fourth gradient, 
i.e. that with respect to Oi, by the energy- 
minimization procedure. The presence o f  the 
fourth free coordinate requires that special pre- 
cautions are taken to ensure that  a true energy 
minimum is achieved when the lattice is relaxed: 
it is often possible, for example, to fred different 
equilibrium structures by rotating a chain about  
its axis [13, 14]. 

The DEVILS package offers a choice o f  three 
methods for computing the r o w - r o w  potential:  
they employ either exact atomic summation,  
stored row potentials or the "row formulat ion" 
procedure [7]. The atomic summation method 
simply involves explicit pair-wise evaluation o f  the 
a t o m - a t o m  potentials given by  Equation 1. With 
the regularity o f  the rows, it is only necessary to 
sum the interaction o f  one atom on one row with 
those of  another, and even in the worst possible 
case o f  two carbon rows of  small separation and 
a C - C  potential  range of  11 A, only 9 pair inter- 
actions are summed. For the special situations in 
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Figure 2 The non-bonded inter- 
atomic potentials of set I. 

which the relative z displacement of  the chains 
is 0 o r  c/2, symmetry is exploited, resulting in 
the worst case in only 5 or 4 interactions, respec- 
tively. Also, the z gradient o f  the row- row energy 
is zero under either of  these conditions. (In prac- 
tice, cases with z = 0 or c/2 are not particularly 
special, for only a few defects, e.g. the chain-axis 
screw dislocation, produce more general values.) 

The stored-row-potential approach of  the 
second option provides a fast alternative to the 
method of  a t o m - a t o m  summation. In a "once- 
and-for-all" evaluation for each atom type, the 
interaction of  one atom with a row was computed 
at 41 a t o m - r o w  spacings for relative z displace- 
ments o f  0 or c/2. Each of  the six functions was 
then represented by a series of  40 cubic splines, 
t he  coefficients o f  the splines being chosen so that 
the a t o m - r o w  energy and its first derivative with 
respect to spacing were continuous. The row- row 
interactions could therefore be calculated rapidly 
from a stored table o f  960 coefficients. This 
method was found  to produce errors o f  less than 
0.02% in comparison with the "exact" procedure. 
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Rapid estimation of  approximate row- row 
interactions for general z displacements is also 
provided in DEVILS by using the stored coeffi- 
cients and assuming a sinusoidal variation with 
respect to z displacement between 0 and c/2. 

The row formulation procedure for evaluating 
row- row interactions is a semi-analytical method 
developed by McCullough and Hermans [15]. It 
utilizes the periodicity of  the row- row energy 
with respect to z by expressing the energy as a 
Fourier series, the coefficients of  which are found 
by integration o f  infinite sums of  the a t o m -  
atom potential. The coefficients involve either 
exponential or Bessel functions, and their evalu- 
ation therefore offsets much of  the time saved by 
avoiding pair-wise sums. Furthermore, the achieve- 
ment o f  high accuracy by retention o f  more terms 
in the Fourier series has a serious effect on mill- 
time. Thus, despite its previous use by the present 
authors [13, 14] and others [11, 12, 15], this 
method was little used in the present work in view 
of  its lack of  efficiency in comparison with .the 
other two approaches. 



T A B L E I I Equilibrium lattice parameters and cohesive energy for orthorhombic ("O") and monoclinic ("M") poly- 
ethylene for the potentials used. The setting angles are measured from the a-axis [ 10 0]. Temperatures and references 
for the experimental values are (i) 77 K [ 17 ], (ii) 297 K [ 18 ], (iii) 77 K [ 19 ] and (iv) 297 K [ 20 ] 

Phase Cell parameters (A) Cell Setting Cohesive energy Potential set 
a b angle, angle, (kcal (mol C2H 4) -1 ) 

02 

O 7.108 4.925 90 ~ 42.7 ~ 3.626 I 
O 6.891 4.809 90 ~ 43.3 ~ 3.944 IV 
O 6.985 4.824 90 ~ 43.2 ~ 3.887 VII 
O 7.133 4.874 90 ~ 43.4 ~ 3.054 VII (Truncated) 
O 7.155 0) 4.899 0) 90 ~ 42.3 ~ 3.68 (iii) Experimental 

M 8.015 4.446 77.4 ~ 84.6 ~ 3.675 I 
M 7.737 4.436 77.5 ~ 83.7 ~ 3.980 IV 
M 7.784 4.423 77.4 ~ 84.3 ~ 3.929 VII 
M 7.768 4.518 76.0 ~ 82.5 ~ 3.071 VII (Truncated) 
M 8.09 (iv) 4.79 (iv) 72.1 ~ 90.0 ~ - Experimental 

3, Results 
3.1. Lattice cell parameters 
The equilibrium lattice parameters a, b, 01, 02 
(=  27r --01) for the or thorhombic phase (Fig. lb )  
and a, b,/3, 01, 02 (= n + 01) for the monoclinic 
structure (Fig. l c ) w e r e  determined for the poten- 
tial sets I, IV and VII of  Table I. The values of  

the structural constants Rcc ,  RCH, Occ, ~HH and 
c (=  2Rcc  sin (q~cc/2)) are, to a limited extent,  
open to a choice for, once selected, they remain 
invadant during a simulation. For  the present 
work, the constants used with set I potentials were 
those given by  Yemni and McCullough [12] (and 
claimed to be "experimental") ,  whereas for sets 
IV and VII the values employed by  Twisleton 
et al. [16] in their study of  the lattice dynamics 
o f  polyethylene were adopted;  they are mainly 
the same as those chosen by Williams [9]. The 
values are given in Table I: most properties are 
insensitive to the precise choice. The lattice energy 

(calculated using the exact sum procedure) for a 
given potential  set was minimized (to an accuracy 
of  0.001%) using the lattice parameters as vari- 
ables, and the resulting parameters are, l isted in 
Table II. The calculated lattice cohesive (sublima- 
tion) energy is also given in the table, together 
with some experimental  data. 

The effects of  changes in the interatomic 
potential  coefficients on the lattice parameters 
are small, and the differences between the par- 
ameters of  set IV and set VII crystals, in particu- 
lar, are slight. Schematic diagrams showing how 
the choice of  ranges of  the a t o m - a t o m  potentials 
affects the chain-chain  interaction are shown in 
Fig. 3a and b. With the " t runcated"  ranges of  
Williams, see Table I, the molecule at the origin 0 
interacts with some or all of  the atoms on the 
eight molecules denoted by  bold vectors, whereas 
with the extended ranges employed here, the inter- 
actions encompass all the molecules shown, i.e. 
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Figure 3 Neighbour chains to O indicating the interaction ranges employed. Only the chains marked bold are included 
for the truncated potential set. 
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T A B L E I I I The non-zero elastic stiffness cons tants  C~/for (a) o r thorhombic  and (b) monoclinic crystals 

(a) Or thorhombic  (b) Monoclinic 

G, c,= (q~) o o o c,, q= (q~) o o q~ 
c,, (q,) o o o q= (q,) o o c=~ 

(c,,) o o o (c~) o o (c,,) 
C,, 0 0 C,, C,, o 

C~ 0 C, 0 
C,, C0, 

Note: the Cartesian reference axes xt,  x2, x 3 for Cff are chosen in the monoclinic case such that  x 3 is the diad axis, i.e. 
[0 0 1], and x~ coincides with the  a-axis, i.e. [1 0 0]. The constants  in parentheses cannot  be determined using a rigid- 
chain mode l  as in the present  work. 

22 neighbours. From the data of Table II, it is 
seen that the influence of truncation on the lattice 
parameters is fairly small and of the same order as 
the effects produced by changes in the potential 
coefficients. The influence on the lattice cohesive 
energy is, however, significant, as expected. 

3.2. Elas t ic  cons t an t s  
The elastic, strain energy density, W, of a body 
is related to the strain components e i (i = 1,2, 3, 
. . . .  6) by the elastic stiffness constants Gj thus 

[211: 6 
Ir = ~ Z Coei~, (2) 

i,j=l 

where the strains are expressed in "matrix" (or 
"engineering") notation. The 6 x 6 matrix of  
constants is symmetrical, resulting in 21 indepen- 
dent constants in the general case. For orthorhom- 
bic and monoclinic crystal systems, however, 
application of the symmetry elements reduces the 
number to 9 and 13, respectively. The non-zero 
elements of  the matrix in these cases are given in 
Table III. 

The elastic constants can be obtained theor- 
etically by either calculation of elastic wave vel- 
ocity in terms of lattice force constants or direct 

computation of W for a model lattice under pre- 
scribed strain. The latter approach has been 
adopted here. An inner region of two chains was 
generated by DEVILS with periodic boundary 
conditions in the x and y directions, and the 
increase in energy density was calculated for cer- 
tain strains using the exact sum procedure. The 
strains which were applied for a given constant are 
listed in Table IV. It will be noted that distortion 
involving ea, i.e. normal strain along the molecular 
axis [0 0 1 ], was not applied: this is a consequence 
of the rigid-chain model employed, and thus the 
constants in parentheses in Table III could not be 
determined. Ideally, the Qj should be calculated 
for vanishingly small strains, but the direct method 
used here is prone to numerical inaccuracy in just 
this region. Each constant was therefore calcu- 
lated for both positive and negative strains with 
magnitudes in the range 0.0001 to 0.08, and the 
value for zero strain found by graphical inter- 
polation. Although non-linearities in the elastic 
behaviour were discernible by this method, they 
were not pursued further. 

The resulting constants for orthorhombic and 
monoclinic polyethylene are given in Table V for 
the three a tom-a tom potential sets; the ortho- 

T A B L E  IV The ene rgy-s t r a in  relationships used to determine the eleastic constants ,  Cff, of  or thorhombic  (O) and 
monoclinic (M) polyethylene 

Non-zero Elastic Other constants  Strain energy, W Structure 
strains constant  required 

~Cll e~ O, M e I C~ t l 2 

~C22 e2 e2 C22 1 2 O, M 
~C~3 6' 3 e3 6,3 s 1 2 O, M 

7C44 e4 e4 C44 ~ 2 O, M 
1 2 e 5 Css ~Csse s O, M 

~C66 6 e6 C66 1 e 2 O, M 
~(C~e~ + e~ + e 2 C~  C~2, C= ~ 2 C~2e ~ + 2C~2e~e2) O, M 

L, ~(C~el  + C~6 6 + 2C~6ele6) M el + e6 C16 Cl C66 ~ 2 e 2 
~(C=e 2 + e ~ 2C26e=e6) M e 2 + e 6 C26 C = ,  C66 1 2 C66 6 "~ 
.y(C4,e, + e, + e~ C~s C~, C~  ~ ~ Csse~ + 2C,~e,e s) M 
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T A B L E V Theoretical elastic constants (units GN m-2) of polyethylene derived in the present work 

Potential set Phase Cll C2~ C,4 Css C66 C,2 C,6 C26 C4s Ea Eb 

I 0 17.8 18.0 5.5 3.0 8.8 8.2 0 0 0 14.1 14.2 
IV O 27.3 18.1 2.1 2.6 10.8 10.1 0 0 0 21.7 14.4 
VII O 21.9 29.0 6.5 1.8 10.2 8.9 0 0 0 19.2 25.4 
VII (Truncated) O 12.8 11.8 3.4 2.1 6.7 6.3 0 0 0 9.4 8.7 
I M 20.7 23.6 1.5 2.1 3.9 3.2 --2.8 1.9 1.8 - - 
IV M 20.9 30.0 8.0 6.0 3.6 3.1 --2.3 --0.1 --0.5 - - 
VII M 29.0 30.0 5.7 5.4 4.9 4.8 --0.6 --0.6 --1.0 - - 

rhombic constants are also given for the t runcated 
potentials.  In comparison to the lattice par- 
ameters, the elastic constants, which are related 
to the first and second derivatives o f  the poten- 
tials, are markedly dependent  on the choice o f  
potential  set. They are also strongly influenced by 
the inclusion o f  more-distant ne ighbour-ne ighbour  

interactions. 
Whilst C~4, Css and C66 are the shear moduli  as 

would be measured in, say, a mechanical test,  the 
tensile moduli  Ea and E b in the a- and b-axis 
directions, respectively, for the or thorhombic 

system are given by 1/$11 and 1/$22, respectively, 
where the compliance constants S/i are elements 
o f  the inverse matrix of  the Qi- It is found that  

if  C33 is much larger than the other Qj, $11 ~- C22/D 
and $22 -~ Cn/D, where D = (Cn C22 --  C~2). The 
moduli  calculated in this way from the ortfiorhom- 
bic data of  Table V are also given in that table. 

4. Discussion 
4.1. Lattice structure 
The or thorhombic lattice parameters calculated 
here are within a per cent or so o f  the experimen- 
tal values, irrespective of  the interatomic potential  
used (see Table II). The experimental  values selec- 
ted for comparison should be low-temperature 
ones, for the computer  model  simulates a crystal 
at 0K .  Unfortunately,  experimental  values in the 
l i terature for setting angle 0] all refer to room tem- 
perature,  and measurements range between 41 ~ 
and 48 ~ Previous theoretical estimates show a 
similar variation. For  example,  Yemni and 
McCullough [12] found 01 = 4 2  ~ for the set I 
potentials allowing chain-chain  interactions out 
to 12th neighbours and Tai et al. [22] obtained 
42.5 ~ with Lennard - Jones  potentials taken to 
only 8 neighbour chains; whereas Wobser and 
Blasenbery [23] calculated 01= 46 ~ using inter- 
atomic potentials of  the Buckingham type,  but 

with different coefficients from Williams and 
interactions out to only 6 neighbour chains, and 

Twisleton et al. [16] found 0a = 46.5 ~ using the 
set VII (Truncated) potentials. (We were unable 
to reproduce the lattice parameter and cohesive 
energy values o f  Twisleton et aL with these poten- 
tials, and this may reflect the variable potential  
ranges which these workers effectively adopted.)  
Clearly, therefore, many semi-empirical potentials 
give satisfactory values for a and b (and e-r the 
cohesive energy if  the range is long enough or the 
potentials are deep enough), but  the experimental  
uncertainty over 01 prevents a clear preference 
being made from the fit to that parameter. 

The situation with the monoclinic phase is 
similar. Again, the potentials give reasonable values 
for a and b, particularly when it is borne in mind 
that the experimental  data were obtained at room 
temperature,  but  the cell angle/3 and setting angle 
01 are not as satisfactory. The angles obtained 
here are close to those o f  other workers, however, 
for Yemni and McCullough [12] found 13 = 77 ~ 
and 0a = 84 ~ with set 1 potentials and Tai et al. 
[22] observed that /3 = 7 8 - 8 0  ~ and 0x = 8 5 - 8 8  ~ 
for their Lennard - Jones  models. It may be con- 
cluded that  the potential  sets used here are ade- 
quate until further experimental  data are to hand. 

It is of  interest to note that for a given potential  
set, the monoclinic phase has a higher cohesive 
energy, i.e. is more stable, than the or thorhombic 
structure. A similar result was found by  Yemni 
and McCullough [12] and Tai et al. [22], the latter 
workers using quite different potentials.  This 
apparently general feature is at variance with 
experience, for the stable phase in practice is 
or thorhombic,  the monoclinic variant only occur- 
ring as a result of  stress [1]. An explanation for 
this effect has been proposed by  Kobayashi and 
Tadokor [24], who calculated that the vibrational 
contr ibution to the free energy is sufficiently 
greater for monoclinic polyethylene to offset the 
discrepancy in the static energy. This re-emphasizes 
the point that  the simulations undertaken in the 
present s tudy apply strictly to 0 K. 
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T A B L E V [ Theoretical and experimental elastic constants for orthorhombic polyethylene in units of GN m -~ 

Source C,  C22 Cl2 C4a Css C~6 E a E b 

Theory [25 ] 7.3 10.0 2.3 3.3 1.1 3.5 6.8 9.3 
Theory [25 ] 9.3 10.9 3.7 3.5 1.3 5.0 8.0 9.4 
Theory [23] 13.8 12.5 7.3 3.2 2.0 6.2 9.5 8.6 
Theory [26] 5.0 2.4 
Theory [t61 12.5 10.9 8.9 7.8 
Theory [ 16 ] 12.4 11.1 8.8 7.9 
Theory [27] 8.0 9.9 3.3 3.2 1.6 3.6 6.9 8.5 
Experiment [28] 3.2 3.9 
Experiment [ 16 ] 11.5 

4.2. Elastic constants 
A complete set o f  elastic constants for poly- 
ethylene has not been obtained experimentally, 
only a few selected moduli being available, and 
most mechanical-property and lattice-defect studies 
have therefore used theoretical estimates. Some 
of  the most-commonly quoted values of  the 
constants dealt with here are listed in Table VI. 
The theoretical figures are all obtained from the 
acoustic phonon ("long wave") velocities and 
therefore assume values of  the harmonic lattice 
force constants, which have usually been derived 
in turn from non-bonded interatomic potentials 
of  the sort discussed above. It is at first sight sur- 
prising, therefore, to find the theoretical values of  
G1, C22, C12 and C66 obtained here (Table V) to 
be, with one exception, significantly higher than 
the previous estimates. These differences are not 
believed to be due to non4inear elastic behaviour 
in the computer model, nor to the neglect of  
inner strains, for when the strained crystallites 
were allowed to relax by permitting chain rota- 
tion, no detectable energy changes occurred for 
small strains. Furthermore, the constants for the 
set VII (Truncated) potentials are close to the 
long-wave values of  Twisleton et al. [16] - their 
second entry in Table VI - who used the same set 
VII potentials (but marginally different lattice 
constants, as discussed above). 

The common characteristic o f  the calculations 
referred to in Table VI is that they assume short 
ranges for the interatomic potentials in com- 
parison with the present simulations and include 
molecular interactions with only a few neighbours. 
Odajima and Maeda [25] and Tadokoro et al. [27], 
for example, neglected C - C  interactions altogether 
and truncated the other interactions at 4 A  and 
approximately 3 A, respectively. (In [25], further- 
more, the C/is were calculated for a nonequili- 
brium lattice [4].) Wobser and Blasenbury [23] 
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used the Williams cut-off distances and neglected 
intermolecular interactions beyond the sixth- 
nearest neighbours. It can be seen from Fig. 2, 
however, that the interatomic force contants, 
which are proportional to dV/dr and d2V/dr 2, 
are not negligible beyond these critical spacings. 
For example, even at r = 6 A, minus d2V/dr 2 for 
the C - C  potential is more than 20% of  its rfiaxi- 
mum value. Such problems do not arise for the 
longer ranges selected here. 

It is unfortunate that the experimental data 
are so sparse. The small numbers of  Sakurada 
et al. [28] were obtained by X-ray measurement 
of  strain in specimens under load and the C11 
figure o f  Twisleton et al. [16] was measured from 
the acoustic phonon frequencies found by neutron 
inelastic scattering. If  this value is confirmed by 
subsequent experiments, it will be necessary for 
theoretical modelling to either find a suitable way 
of  smoothly truncating the existing potentials at 
small a t o m - a t o m  separations, which seems impro- 
bable, or develop new potentials which can cater 
for greater ranges of  interaction. For the moment,  
it seems prudent to continue to use the existing 
potentials with ranges extended to avoid instability 
and numerical problems in defect modelling, and 
to consider the crystals simulated as "model" 
systems rather than accurate replicas o f  poly- 
ethylene. 

It has sometimes been assumed for simplicity 
that polyethylene crystals are transversely isotro- 
pic, i.e. Ca1 = C22, C44 = Css and 2C66 = ( C l l  - -  C 1 2 )  

for the orthorhombic constants, but inspection 
of  Tables V and VI reveals that this is not generally 
an accurate approximation and may be a particu- 
larly inaccurate one when long-range interactions 
are important. 

Finally, the elastic constants for the mono- 
clinic phase have been obtained for the first time. 
They show the same sort o f  variation from poten- 



tial set to potential set as the orthorhombic con- 
stants, and in this case there are no experimental 
or theoretical values for comparison. If  subsequent 
investigations provide a firm lead, it would be 
possible to scale the values of  Table V, or perhaps 
to use means of  the calculated values. In the mean- 
time, they should find use as parameters for model 
calculations. 
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